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Abstract. Studies of equilibrium breakdown were done for two flow pesh$ representative of typical conditions for vehicles
reentering the Earth atmosphere. The first studied problasmax81 km Crew Exploration Vehicle (CEV) re-entry flow, with
additional considerations for local flow features alonggtegnation line. The second problem was a classical Coiletie

a volume of gas confined between two fast moving parallebplaf indefinite length and width. Both of the problems were
solved by the DSMC technique with the particle velocity deddlected to compute the distribution function at the areas
of interest. In the case of stagnation line flow, a strong khaave, formed in front of the vehicle at an altitude of 81 km
was studied, and in the case of Couette flow, a high velocitintary layer was examined in details at different Knudsen
numbers. For both of the cases the Kolmogorov-Smirnov (Ke$)was applied to determine the degree of local flow non-
equilibrium with following considerations regarding thepéicability of coupled statistical BGK and DSMC technigua the
semi-rarefied flow regimes where the use of the baseline DSMi@ited due to the computational cost.
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THE MODELING PROCEDURE

The technique used in this research was the majorant freguU2BMC scheme [1]. The baseline DSMC modeling
was applied using the SMILE [1] code. In the case of the Ceulttv, a 2D computational domain was used to model
an essentially 1D problem in anticipation of the complex 2id 8D boundary layer flow studies requiring the local
flow equilibrium analysis and in the case of the shock waveeav@xploration vehicle (CEV) shaped body subjected
to a flow at 81 km was chosen as a test case. The flow parametéstifioof the problems and numerical parameters
of the DSMC scheme are presented in table at the end of the.pape
To study the degree of non-equilibrium in the flow we used tlmogrov-Smirnov (K-S) criterion. The K-S

criterion provides a quantitative measure of differende/ben the computed (based on the sampled particle velgcitie
cumulative distribution function and a theoretical cuntivkadistribution function such as Maxwellian. In thesediés
we computed the distribution function by sampling the floloegies at a number of locations, and the Maxwellian
distribution function was defined by the local translatideenperature of the modeled flow. The value of K-S criterion
was computed as follows: The particle velocities were sathglring an extended period of computational time after
the solution steady state was reached. The sampled vebeitere arranged in an increasing order and then the
maximum difference between the computed cumulative digion function and locally defined Maxwellian one was
obtained as follows:

Dn = max(F (x) — A(x)) (0

whereF (x;) andA(x; ) are the observed (computed) and assumed (Maxwellian inesesy CDFs at thiéh observation

of the ordered samples. In the presented study we slighthifiad the K-S criterion. Instead of arranging data in an
increasing order, we place it into different velocity bimelahen for each of the bins, we compute the CDFs using the
data arranged in these velocity bins. The maximum diffezénthen found as follows:

Dn = max(F (i) — A(i)) 2

whereF (i) andA(i) are the observed and assumed CDFs aittheelocity interval.



RESULTS AND DISCUSSION

Couette flow

The first solved problem was a planar Couette flow. The gas fiol place without any pressure gradient between
the plates that were parallel and moving with a constantiglof +500. The height of the channel was 0.5 m, and the
Knudsen number varied from 0.01 to 0.5 for different subesa$he plates were maintained at the same and constant
temperature of J=273 K, which was equal to the free stream temperature.

The computational domain for the Couette flow problem is gmé=d in Fig. 1, where the flow streamlines and
velocity contour plots are also shown. As can be seen in thiedfihe equal velocity contours are parallel to the walls
and the flow pattern is correct as illustrated by the stre@asliwhich indicates that the 1D problem is accurately
solved by a 2D code.

The computed distribution function was based on one milkamples of particle velocities collected after the
solution steady state was reached. The chosen criticad wdlthe K-S criterion was 0.005 [2] which meant that if the
difference between the computed and local Maxwellian catiud distribution functions was smaller than the critical
value, the flow was considered to be in the state of equilibriu

Portions A and B of Figure 2 show respectively the non-dinmra velocity and temperature profiles for three
Couette flow sub-cases with Knudsen numbers respectively@1 and 0.5. Expectedly the temperature maximum
is observed at the middle station across the plates, fohadktcases, where the flow velocity is zero. Portion C of
Fig. 2 shows the difference between the local Maxwelliatrithstion function and the computed one at the wall of the
channel for Knudsen 0.5 case, and portion D of the figure shioev&-S parameter profiles for all three cases along
with the equilibrium limit of the parameter shown as a dadives

It can be seen in the figure that for the first case of Kn=0.04 K#5 value remains within the equilibrium limit,
hence showing that the flow is essentially continuum at thisdéen number. The K-S parameter deviates slightly
from the limit for the second case of Kn=0.1 showing a noniégjium behavior of the flow. For the third case of
Kn=0.5, the K-S parameter deviates significantly from thaildzrium limit demonstrating a significant degree of
non-equilibrium in the flow and therefore suggesting thatiatkinetic consideration of the flow is necessary.

Stagnation line shock wave

The computational domain for the shoch layer CEV case isepted in Fig. 3, where mole fraction contour plots
of molecular and atomic nitrogen and linear plots of spegieke fractions are also presented. One chemical reaction:
the molecular nitrogen dissociation was modeled. As careba B the figure, the overall flow pattern is correct and
the molecular nitrogen dissociation in the shock layer isleted as expected.

The velocity distribution functions sampled at severablimns across the shock layer for molecular and atomic
nitrogen are presented in Figs. 4 and 5 respectively in cosgrawith locally defined Maxwellian velocity distribu-
tion functions. As the flow progresses through the shockrltlye molecular nitrogen velocity distribution function,
initially Maxwellian, deviates strongly from the equilibm and then becomes again close to Maxwellian distribution
function in the stagnation area in front of the body. The atonitrogen distribution function is harder do sample
at the upstream edge of the shock layer since very few masaflnitrogen initially dissociate to produce atomic
nitrogen. To visualize the amount of atomic nitrogen, itdarfeaction is presented in the rightmost portion of Fig.3
in comparison with molecular nitrogen mole fraction acribesshock layer. The atomic nitrogen distribution function
sampled at several locations across the shock layer, pegsiert deviates from the Maxwellian one inside the shock
layer, however becomes close to Maxwellian after the shasitef compared to molecular nitrogen distribution func-
tion. Such an observation can be done by comparing velostsitaution functions sampled at the same locations and
presented in Figs.4 and 5 for molecular and atomic nitrogsepectively.

An interesting feature of the flow is presented in the thiairirthe left portion of Fig. 4, where molecular nitrogen
velocity distribution functions obtained at a location behthe shock is presented. The feature becomes apparent
when the figure is compared with atomic nitrogen distributfonction sampled at the same location in the flow
and presented in the third from the left portion of Fig. 5. IBof the functions are compared with the Maxwellian
distribution function defined by the local translationahfgerature. As can be seen in the figures there is a difference
between the shapes of the molecular and atomic velocityilalision functions. The molecular nitrogen distribution
function shows a bimodal profile and a stronger deviatiomfexqjuilibrium while the atomic nitrogen distribution



function is closer to the Maxwellian one and does not showkampodal behavior. The bimodal velocity distribution

in the case of molecular nitrogen is due to the moleculesatefisfrom the wall and molecules coming from the shock
layer forming two distinct populations of particles. In thase of atomic nitrogen, on contrary, there is no second
population in the velocity space since nitrogen atoms cgnfiiom the wall relax to the local state of equilibrium
faster compared with the molecular nitrogen. Atomic nigogloes not have internal degrees of freedom and therefore
requires less collisions to reach the local state of equilib.

Results including both species are presented in Figs. 6 aRjire 6 presents the distribution function obtained
at several locations along the flow stagnation line. Porfionof the figure presents the distribution function at a
location x=-0.623 m (before the shock) in comparison with ¢lquilibrium distribution function defined by the local
translational temperature. As can be seen in the figure thflgoof the computed velocity distribution function is
close to that of the local equilibrium velocity distributiéunction. This observation (which is also confirmed with th
K-S studies) indicates the state of equilibrium in the unattsed flow in front of the shock. However, as the flow enters
the shock layer the profiles of the computed distributiorcfiom and the locally defined equilibrium one deviate from
each other as can be seen in portions (B) and (C) of Fig. 6 whadeeity distribution functions taken at locations
x=-0.421 and x=-0.403 are presented. The strongest differes observed at a location of x=-0.403 (portion (C) of
Fig. 6, which corresponds to the middle of the shock layerth&sflow exits the shock layer region and stagnates in
front of the body, the computed distribution function beesslose to the equilibrium one once again as presented in
portion (D) of Fig. 6.

The results of the K-S studies for the CEV case are presentEd)i 7 where the K-S criterion values are shown
along the stagnation line. Also shown in the figure are thestedional, rotational and vibrational temperatures to
articulate the effect of non-equilibrium in the flow. As cae &een in the figure the degree of difference between
the temperature profiles is expectedly large in this straagignt flow, what is less obvious however is the behavior
of the K-S criterion profile. The K-S value indeed increasigsificantly in the shock layer constituting a strong
deviation from equilibrium, however, such a deviation asceven before the flow reaches the shock layer (observe
the difference in the behavior of the K-S criterion and thrapgerature profiles in Fig. 7). This difference is due to the
fastest molecules (coming from the shock layer) ability émgirate the flow upstream and this is why the effect of
the presence of the shock can be observed at some distariceanp$o the shock. This also means that in a coupled
BGK/DSMC scheme the regions of application of a more aceubEs8MC scheme may not be exactly identified
based on the macro-parameters and their gradients alothenare comprehensive kinetic approaches, based on the
distribution function and criteria such as K-S criterioe aecessary.

CONCLUSION

In this work we tested the K-S criterion as a tool to deterntimenon-equilibrium portions in semi-rarefied flows.
We studied two different problems: a strong shock wave mmoband a weak gradient Couette flow. We found it
possible to quantify the degree of non-equilibrium in bothhe studied flow cases indicating that the K-S criterion
can be used to locate the areas of non-equilibrium. Althdhgtbaseline technique used in this work was the DSMC
technique, the data necessary to compute the values ofitbear can be obtained instead from any statistical solver
capable of accounting for the non-equilibrium propertiethie flow. One of such techniques can be the statistical BGK
method which is less computationally demanding than thellmeesDSMC. Based on the results of the statistical BGK
solution the areas of local non-equilibrium can be found smided with a more accurate, but also more expensive,
DSMC method. This will provide a foundation for a coupled BGISMC (particle-particle) technique of an increased
efficiency and high accuracy in the semi-rarefied flow confians. Development of such a technique is the ultimate
goal of this research.
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Height, km 81 Couette flow DSMC, 81 km CEV case
Velocity, m/sec 7600.0 Number of cells 164,860 2,124,130
Temperature, K 189.0 Number of particles 33,821,840 20,900,300

Number Density, 1/m3 1.98x 1O+23 2.9x 1O+19 Timestep, sec Dx 10*8 1.0x 10*8
N2 Mole Fraction 100% 78.685% Number of processors 16 32
CEV 81 km. (Atmosphere model: MSIS-E-90). DSMC scheme. Numerical parameters.
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FIGURE 1. Kn =0.01 Couette flow computational domain and flow streagslin

04F B 04f
o2}t 02
T T
L o I o
02} E 02f
—e— Kn=001
—a— Kn=0.1
04F —— Kkn=05 04F
04 0.2 0 0.2 0.4
ui,,
atyH =099
00016 - - o

—=a— DSMC
——=—— Maxwell_Boltzmann

0.0012 |-

DF

a
0.0008 |-

0.0004
——8— Kn=05
——a— Kn=0.1
——v—— Kn=0.01

~ = = - Equilbrium fimit

2000 0 0 0.02 0.04 0.06 0.08 0.1
K-S Value

X Component Thermal Speed (m/s)

C D

FIGURE 2. Couette flow 0.01,0.1, and 0.5 cases. A: Velocity profile, &niperature profile, C: distribution functions at the wall
at Kn=0.5, D: K-S values.
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FIGURE 3. 81 km CEV case mole fractions, Left,, Center: N, RightN, and N
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FIGURE 4. N, velocity distribution function samples across the shaglet.
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FIGURE 5. N velocity distribution function samples across the shogleta
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FIGURE 6. 81 km CEV shock wave case. Velocity distribution function.b&fore the shock, B: inside the shock, C: inside the
shock, D: after the shock.
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FIGURE 7. Kolmogorov Smirnov criteria value and translational, timaal and vibrational temperatures along the stagnation
line of the 81 km CEV flow.



