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Abstract. Studies of equilibrium breakdown were done for two flow problems representative of typical conditions for vehicles
reentering the Earth atmosphere. The first studied problem was a 81 km Crew Exploration Vehicle (CEV) re-entry flow, with
additional considerations for local flow features along thestagnation line. The second problem was a classical Couetteflow,
a volume of gas confined between two fast moving parallel plates of indefinite length and width. Both of the problems were
solved by the DSMC technique with the particle velocity datacollected to compute the distribution function at the areas
of interest. In the case of stagnation line flow, a strong shock wave, formed in front of the vehicle at an altitude of 81 km
was studied, and in the case of Couette flow, a high velocity boundary layer was examined in details at different Knudsen
numbers. For both of the cases the Kolmogorov-Smirnov (K-S)test was applied to determine the degree of local flow non-
equilibrium with following considerations regarding the applicability of coupled statistical BGK and DSMC techniques in the
semi-rarefied flow regimes where the use of the baseline DSMC is limited due to the computational cost.
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THE MODELING PROCEDURE

The technique used in this research was the majorant frequency DSMC scheme [1]. The baseline DSMC modeling
was applied using the SMILE [1] code. In the case of the Couette flow, a 2D computational domain was used to model
an essentially 1D problem in anticipation of the complex 2D and 3D boundary layer flow studies requiring the local
flow equilibrium analysis and in the case of the shock wave, a Crew exploration vehicle (CEV) shaped body subjected
to a flow at 81 km was chosen as a test case. The flow parameters for both of the problems and numerical parameters
of the DSMC scheme are presented in table at the end of the paper.

To study the degree of non-equilibrium in the flow we used the Kolmogrov-Smirnov (K-S) criterion. The K-S
criterion provides a quantitative measure of difference between the computed (based on the sampled particle velocities)
cumulative distribution function and a theoretical cumulative distribution function such as Maxwellian. In these studies
we computed the distribution function by sampling the flow velocities at a number of locations, and the Maxwellian
distribution function was defined by the local translational temperature of the modeled flow. The value of K-S criterion
was computed as follows: The particle velocities were sampled during an extended period of computational time after
the solution steady state was reached. The sampled velocities were arranged in an increasing order and then the
maximum difference between the computed cumulative distribution function and locally defined Maxwellian one was
obtained as follows:

Dn = max(F(xi)−A(xi)) (1)

whereF(xi) andA(xi) are the observed (computed) and assumed (Maxwellian in our cases) CDFs at theith observation
of the ordered samples. In the presented study we slightly modified the K-S criterion. Instead of arranging data in an
increasing order, we place it into different velocity bins and then for each of the bins, we compute the CDFs using the
data arranged in these velocity bins. The maximum difference is then found as follows:

Dn = max(F(i)−A(i)) (2)

whereF(i) andA(i) are the observed and assumed CDFs at theith velocity interval.



RESULTS AND DISCUSSION

Couette flow

The first solved problem was a planar Couette flow. The gas flow took place without any pressure gradient between
the plates that were parallel and moving with a constant velocity of ±500. The height of the channel was 0.5 m, and the
Knudsen number varied from 0.01 to 0.5 for different sub-cases. The plates were maintained at the same and constant
temperature of Tp=273 K, which was equal to the free stream temperature.

The computational domain for the Couette flow problem is presented in Fig. 1, where the flow streamlines and
velocity contour plots are also shown. As can be seen in the figure the equal velocity contours are parallel to the walls
and the flow pattern is correct as illustrated by the streamlines, which indicates that the 1D problem is accurately
solved by a 2D code.

The computed distribution function was based on one millionsamples of particle velocities collected after the
solution steady state was reached. The chosen critical value of the K-S criterion was 0.005 [2] which meant that if the
difference between the computed and local Maxwellian cumulative distribution functions was smaller than the critical
value, the flow was considered to be in the state of equilibrium.

Portions A and B of Figure 2 show respectively the non-dimensional velocity and temperature profiles for three
Couette flow sub-cases with Knudsen numbers respectively 0.01,0.1 and 0.5. Expectedly the temperature maximum
is observed at the middle station across the plates, for all three cases, where the flow velocity is zero. Portion C of
Fig. 2 shows the difference between the local Maxwellian distribution function and the computed one at the wall of the
channel for Knudsen 0.5 case, and portion D of the figure showsthe K-S parameter profiles for all three cases along
with the equilibrium limit of the parameter shown as a dashedline.

It can be seen in the figure that for the first case of Kn=0.01, the K-S value remains within the equilibrium limit,
hence showing that the flow is essentially continuum at this Knudsen number. The K-S parameter deviates slightly
from the limit for the second case of Kn=0.1 showing a non-equilibrium behavior of the flow. For the third case of
Kn=0.5, the K-S parameter deviates significantly from the equilibrium limit demonstrating a significant degree of
non-equilibrium in the flow and therefore suggesting that a strict kinetic consideration of the flow is necessary.

Stagnation line shock wave

The computational domain for the shoch layer CEV case is presented in Fig. 3, where mole fraction contour plots
of molecular and atomic nitrogen and linear plots of speciesmole fractions are also presented. One chemical reaction:
the molecular nitrogen dissociation was modeled. As can be seen in the figure, the overall flow pattern is correct and
the molecular nitrogen dissociation in the shock layer is modeled as expected.

The velocity distribution functions sampled at several locations across the shock layer for molecular and atomic
nitrogen are presented in Figs. 4 and 5 respectively in comparison with locally defined Maxwellian velocity distribu-
tion functions. As the flow progresses through the shock layer the molecular nitrogen velocity distribution function,
initially Maxwellian, deviates strongly from the equilibrium and then becomes again close to Maxwellian distribution
function in the stagnation area in front of the body. The atomic nitrogen distribution function is harder do sample
at the upstream edge of the shock layer since very few molecules of nitrogen initially dissociate to produce atomic
nitrogen. To visualize the amount of atomic nitrogen, its mole fraction is presented in the rightmost portion of Fig.3
in comparison with molecular nitrogen mole fraction acrossthe shock layer. The atomic nitrogen distribution function
sampled at several locations across the shock layer, presented in 5 deviates from the Maxwellian one inside the shock
layer, however becomes close to Maxwellian after the shock faster compared to molecular nitrogen distribution func-
tion. Such an observation can be done by comparing velocity distribution functions sampled at the same locations and
presented in Figs.4 and 5 for molecular and atomic nitrogen respectively.

An interesting feature of the flow is presented in the third from the left portion of Fig. 4, where molecular nitrogen
velocity distribution functions obtained at a location behind the shock is presented. The feature becomes apparent
when the figure is compared with atomic nitrogen distribution function sampled at the same location in the flow
and presented in the third from the left portion of Fig. 5. Both of the functions are compared with the Maxwellian
distribution function defined by the local translational temperature. As can be seen in the figures there is a difference
between the shapes of the molecular and atomic velocity distribution functions. The molecular nitrogen distribution
function shows a bimodal profile and a stronger deviation from equilibrium while the atomic nitrogen distribution



function is closer to the Maxwellian one and does not show anybimodal behavior. The bimodal velocity distribution
in the case of molecular nitrogen is due to the molecules reflected from the wall and molecules coming from the shock
layer forming two distinct populations of particles. In thecase of atomic nitrogen, on contrary, there is no second
population in the velocity space since nitrogen atoms coming from the wall relax to the local state of equilibrium
faster compared with the molecular nitrogen. Atomic nitrogen does not have internal degrees of freedom and therefore
requires less collisions to reach the local state of equilibrium.

Results including both species are presented in Figs. 6 and 7. Figure 6 presents the distribution function obtained
at several locations along the flow stagnation line. Portion(A) of the figure presents the distribution function at a
location x=-0.623 m (before the shock) in comparison with the equilibrium distribution function defined by the local
translational temperature. As can be seen in the figure the profile of the computed velocity distribution function is
close to that of the local equilibrium velocity distribution function. This observation (which is also confirmed with the
K-S studies) indicates the state of equilibrium in the undisturbed flow in front of the shock. However, as the flow enters
the shock layer the profiles of the computed distribution function and the locally defined equilibrium one deviate from
each other as can be seen in portions (B) and (C) of Fig. 6 wherevelocity distribution functions taken at locations
x=-0.421 and x=-0.403 are presented. The strongest difference is observed at a location of x=-0.403 (portion (C) of
Fig. 6, which corresponds to the middle of the shock layer. Asthe flow exits the shock layer region and stagnates in
front of the body, the computed distribution function becomes close to the equilibrium one once again as presented in
portion (D) of Fig. 6.

The results of the K-S studies for the CEV case are presented in Fig. 7 where the K-S criterion values are shown
along the stagnation line. Also shown in the figure are the translational, rotational and vibrational temperatures to
articulate the effect of non-equilibrium in the flow. As can be seen in the figure the degree of difference between
the temperature profiles is expectedly large in this strong gradient flow, what is less obvious however is the behavior
of the K-S criterion profile. The K-S value indeed increases significantly in the shock layer constituting a strong
deviation from equilibrium, however, such a deviation occurs even before the flow reaches the shock layer (observe
the difference in the behavior of the K-S criterion and the temperature profiles in Fig. 7). This difference is due to the
fastest molecules (coming from the shock layer) ability to penetrate the flow upstream and this is why the effect of
the presence of the shock can be observed at some distance upstream to the shock. This also means that in a coupled
BGK/DSMC scheme the regions of application of a more accurate DSMC scheme may not be exactly identified
based on the macro-parameters and their gradients alone, and more comprehensive kinetic approaches, based on the
distribution function and criteria such as K-S criterion are necessary.

CONCLUSION

In this work we tested the K-S criterion as a tool to determinethe non-equilibrium portions in semi-rarefied flows.
We studied two different problems: a strong shock wave problem and a weak gradient Couette flow. We found it
possible to quantify the degree of non-equilibrium in both of the studied flow cases indicating that the K-S criterion
can be used to locate the areas of non-equilibrium. Althoughthe baseline technique used in this work was the DSMC
technique, the data necessary to compute the values of the criterion can be obtained instead from any statistical solver
capable of accounting for the non-equilibrium properties in the flow. One of such techniques can be the statistical BGK
method which is less computationally demanding than the baseline DSMC. Based on the results of the statistical BGK
solution the areas of local non-equilibrium can be found andsolved with a more accurate, but also more expensive,
DSMC method. This will provide a foundation for a coupled BGK-DSMC (particle-particle) technique of an increased
efficiency and high accuracy in the semi-rarefied flow configurations. Development of such a technique is the ultimate
goal of this research.
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Height, km 81
Velocity, m/sec 7600.0
Temperature, K 189.0

Number Density, 1/m−3 1.98×10+23 2.9×10+19

N2 Mole Fraction 100% 78.685%

CEV 81 km. (Atmosphere model: MSIS-E-90).

Couette flow DSMC, 81 km CEV case

Number of cells 164,860 2,124,130
Number of particles 33,821,840 20,900,300

Timestep, sec 1.0×10−8 1.0×10−8

Number of processors 16 32

DSMC scheme. Numerical parameters.
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FIGURE 1. Kn = 0.01 Couette flow computational domain and flow streamlines.
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FIGURE 2. Couette flow 0.01,0.1, and 0.5 cases. A: Velocity profile, B: Temperature profile, C: distribution functions at the wall
at Kn=0.5, D: K-S values.
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FIGURE 3. 81 km CEV case mole fractions, Left:N2, Center: N, Right:N2 and N
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FIGURE 4. N2, velocity distribution function samples across the shock layer.
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FIGURE 5. N velocity distribution function samples across the shock layer.
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FIGURE 6. 81 km CEV shock wave case. Velocity distribution function. A: before the shock, B: inside the shock, C: inside the
shock, D: after the shock.
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FIGURE 7. Kolmogorov Smirnov criteria value and translational, rotational and vibrational temperatures along the stagnation
line of the 81 km CEV flow.


